GY7505 UART-I2C Module 产品使用说明书

产品型号: GY7505 UART-I2C Module

手册版本: V1.03

目 录

-,	产品简介3
	1.1 性能与技术指标
	1.2 典型应用
	1.3 通信协议转换
	1.4 产品销售清单3
	1.5 技术支持与服务
	1.6 I2C 适配器产品定购信息
二、	外形与接口描述
	2.1 产品外形
	2.2 引脚描述
	2.3 封装尺寸
	2.4 PIN 脚定义
三、	电气特性6
四、	串口波特率设置
五、	软件操作指令及举例7
	5.1 Easy I2C 与 Timing I2C
	5.1.1 Esay I2C 模式
	5.1.2 Timing I2C 模式7
	5.2 串口命令详解
	5.2.1 选择 I2C 工作模式
	5.2.2 获取 I2C 工作模式
	5.2.3 选择 I2C 当前通道号8
	5.2.4 获取 I2C 当前通道号9
	5.2.5 设置当前 I2C 通道的 I2C 速率
	5.2.6 获取当前 I2C 通道的 I2C 速率
	5.2.7 Easy I2C 写操作9
	5.2.8 Easy I2C 读操作9
	5.2.9 产生 I2C 启动时序(Timing I2C 模式)10
	5.2.10 产生 I2C 字节写时序(Timing I2C 模式)10
	5.2.11 产生 I2C 字节读时序(Timing I2C 模式)10
	5.2.12 产生 I2C 停止时序(Timing I2C 模式)11
	5.3 常见问题现象
六、	利用 VCI_GYI2C 库函数二次开发 11
七、	应用系统示意图12

一、产品简介

1.1 性能与技术指标

- 1) UART 串口转 I2C 总线接口, 1路 I2C 接口输出。
- 2)标准的 I2C 主机接口, Master 方式, 兼容 SMbus 协议;
- 3) 串口 TXD 和 RXD 信号为 TTL 电平,可进行 RS232 电平转换后与 PC 串口相连。
- 4) 电源输入: +5V
- 5) I2C 接口信号:SCL,SDA,GND
- 6) 输出信号 3.3V TTL, 输入 5VTTL 可承受。
- 7) 串口速率硬件设置,支持9600、119200、57600、115200bps
- 8) I2C 总线速率软件设置, 支持 1k-800khz。
- 9) 支持一体化傻瓜式读写模式(Easy I2C),以及分步 I2C 时序控制读写模式(Timing I2C)。
- 10) 支持通过串口软件指令控制 I2C 接口的读写操作,进行二次开发。
- 11) 支持通过调用 VCI_GYI2C 的 DLL 库函数,进行二次开发。

1.2 典型应用

为电脑或主控板增加 I2C 总线接口;

通过 UART 串口进行 I2C 接口测试;

I2C 接口的元器件寄存器读写;

I2C 接口的 EEPROM 读写;

适用于 PC 以及嵌入式系统的串口转 I2C 需求;

封装较小,可以作为一颗芯片焊接或安装到用户的 PCB 板上。

1.3 通信协议转换

UART 串口与 I2C 总线接口转换。

1.4 产品销售清单

UART-I2C 转换器一只;

光盘1张(包括用户手册,相关资料等);

1.5 技术支持与服务

货到 10 日内,用户不满意,无条件退货。一年内免费维修更换。 Mail: <u>support315@glinker.cn</u> 网址: <u>www.glinker.cn</u>

1.6 I2C 适配器产品定购信息

型号	名称	I2C 通道数	I2CTools 软件	VCI_GYI2C
				库文件
GY7501	USB-I2C Adapter	1	支持	支持
GY7512	USB-I2C Adapter	2	支持	支持
GY7505	UART-I2C Module	1	支持	支持
GY7506	RS232-I2C Module	1	支持	支持
GY7601	RS232-I2C Adapter	1	支持	支持
GY7602	RS232-I2C Adapter	2	支持	支持
G Y7604	RS232-I2C Adapter	4	支持	支持
GY7608	RS232-I2C Adapter	8	支持	支持

二、外形与接口描述

2.1 产品外形

2.2 引脚描述

2.3 封装尺寸

Name	mil (英制)	mm(毫米)	
А	680	17.272	
В	620	15.748	Å GY7505
С	600	15.24	
D	100	2.54	
Е	500	12.7	

2.4 PIN 脚定义

引脚序号		输入输出	描述
PIN1	COMSET1	Ι	串口波特率设置1(见后文描述)
PIN2	COMSET0	Ι	串口波特率设置0(见后文描述)
PIN3	RXD	Ι	串口输入信号,由模块接收数据引脚,TTL 电平
PIN4	TXD	0	串口输出信号,由模块发送数据引脚,TTL 电平
PIN5	VDD		电源输入

PIN6	GND		电源地
PIN7	+3.3V		地转换器提供的 3.3V 输出,如果不用,则将其悬空
PIN8	GND		信号
PIN9	SDA	I/O	I2C 接口数据信号,模块内部 2.7K 电阻已上拉到 3.3V
PIN10	SCL	0	I2C 接口时钟信号,模块内部 2.7K 电阻已上拉到 3.3V
PIN11	NULL		空
PIN12	NULL		空

三、电气特性

	Min	Normal	Max	备注
VDD	4.5V	5V	5.5V	电源输入
VOH	3.0V	3.25V	3.35V	输出
VOL			0.4V	
VIH	2.0V		5.5V	输入时,5V 可承 受
VIL			0.8V	

四、串口波特率设置

COMSET1	COMSET0	I2C 速率	
0	0	9600	
0	1	19200	
1	0	57600	
1	1	115200	
备注:引脚悬空为高电平,1状态			

五、软件操作指令及举例

建议用户编程时采用 VCI_GYI2C 的库函数来编写自己的界面应用程序,会更加简便。

当然通过如下串口指令也可以,步骤较多,稍显繁琐。

对模块的参数设置以及读写 I2C 从设备,均通过输入串口命令数据来进行。(电脑上可用串口调 试助手等串口软件测试,8 个数据位,1 个停止位,无奇偶校验,串口波特率选被设置的值,如果 COMSET0,COMSET1 引脚悬空,则是 115200bps)

I2C 转换器上电后的默认参数:

工作模式: EasyI2C 模式

I2C 通道号: 0 号通道

I2C 时钟频率: 200khz

5.1 Easy I2C 与 Timing I2C

所有 GY7XXX 系列的 I2C 转换器/模块支持两种读写操作模式。

5.1.1 Esay I2C 模式

可直接通过命令或函数读写数据,无须考虑去产生 I2C 的时序。

工作过程:转换器/模块得到该命令以后,进行解析,然后启动内部的 I2C 读写控制时序,将上 位机要求的操作完成以后,再将结果返回给上位机

优点:该方式简单方便,快速,推荐使用。用户不需要了解 I2C 时序协议。

I2C 时钟频率从 1k-800khz 可设置。

局限性:受内部缓冲区的限制,一次命令最多读出来的数据为 512 个,一次最多写入的数据为 520 个(包含命令字)。

5.1.2 Timing I2C 模式

I2C 时序由上位机软件或命令来控制,分如下4种命令。

1)产生 I2C 启动时序状态。

2)写入8个bit,即一个字节,之后获取并返回ACK状态

3)读出 8 个 bit, 即一个字节, 之后给出 ACK 或 NACK

4)产生 I2C 停止时序状态

优点:用户通过上位机软件自行控制 I2C 的时序,时序完全透明开放。可读写的长度不受限制, 由用户控制。

局限性:步骤繁琐,用户需要熟悉 I2C 时序才能使用该方式。

来回通信握手判断,对速度有影响。

I2C 时钟频率可设置的范围: 1k-235khz 可设置

5.2 串口命令详解

命令字汇总如下:

#define CMD_SET_MODE	0x10	//0~EasyI2C 模式,1~TimingI2C 模式
#define CMD_GET_MODE	0x11	//0~EasyI2C 模式,1~TimingI2C 模式
#define CMD_SET_CHANNEL	0x40	//选择当前 I2C 通道号
#define CMD_GET_CHANNEL	0x41	//查询当前 I2C 通道号
#define CMD_SET_CLKVALUE	0x42	//设置 I2C 时钟频率,单位 KHZ
#define CMD_GET_CLKVALUE	0x43	//查询 I2C 时钟频率,单位 KHZ
#define CMD_SEND_DATA	0x44	//EasyI2C 模式的读写命令字
#define CMD_SET_STA	0x60	//TimingI2C 模式,产生 I2C 启动时序
#define CMD_WRITE_BYTE	0x61	//TimingI2C 模式,产生 I2C 写一个字节的时序
#define CMD_READ_BYTE	0x62	//TimingI2C 模式,产生 I2C 读一个字节的时序
#define CMD_SET_STO	0x63	//TimingI2C 模式,产生 I2C 停止时序

(以下命令字和数据都为16进制表示)

5.2.1 选择 I2C 工作模式

5.2.2 获取 I2C 工作模式

#define CMD_GET_ MOD)E 0x11//查询当前 I2C 工作模式
格式:命令字11	
返回值:当前 I2C 工作模	武
举例:	
11 返回值 00	当前为 Easy I2C 读写模式
11 返回值 01	当前为 Timing I2C 模式

5.2.3 选择 I2C 当前通道号

#define CMD_SET_CHANNEL 0x40 //选择当前 I2C 通道号
(执行命令后,内部 I2C 引脚重新配置)
格式:命令字 40 + 需要选择的 I2C 通道号
举例:
40 00 选择 0 号 I2C 通道作为当前通道

40 03 选择 3 号 I2C 通道作为当前通道

返回值: AA

默认设置:如果不进行此设置,则默认为00

5.2.4 获取 I2C 当前通道号

 #define CMD_GET_CHANNEL 0x41
 //查询当前 I2C 通道号

 格式: 命令字 41
 返回值: 当前工作的 I2C 通道号

 举例:
 41
 返回值 01
 当前工作的通道索引号为 01 , 即第 01 路 I2C 接口

5.2.5 设置当前 I2C 通道的 I2C 速率

 #define CMD_SET_CLKVALUE 0x42
 //设置 I2C 时钟频率,单位 KHZ

 格式:命令字42 +速率的高字节+速率的低字节

 举例:

 42 00 64
 将当前 I2C 通道的速率设置为 0x0064 即 100khz

 42 01 90
 将当前 I2C 通道的速率设置为 0x0190 即 400khz

 返回值:AA
 默认设置:如果不进行此设置,则默认为 00 64, 即 100khz

5.2.6 获取当前 I2C 通道的 I2C 速率

#define	e CMD_GET_CLKVALUE	E 0x43	//查询 I2C 时转	中频率,国	单位 KHZ
格式:	命令字 43 举例:				
43	返回值 00 64	当前 I2C	通道的速率为	0x0064 🖡	印 100khz
43	返回值 01 90	当前 I2C	通道的速率为	0x0190	即 400khz

5.2.7 Easy I2C 写操作

#define CMD_SEND_DATA 0

0x44 //EasyI2C 模式的读写命令字

格式:

命令字	设备地址+R/W	ROM 地址,数据
44	7 位设备地址+读写位为 0	依次写入内部 ROM 或寄存器的 地址和数据

注: 一个命令帧的总长度最大为 260 个字节

举例: (slaveaddress+W =0xA0)

44 A0 00 33 44	返回值 0xAA	依次写入地址00,	数据 33,44。
44 A0 00	返回值 0xAA	只写入地址 00	
	返回值 0xBB	错误	

5.2.8 Easy I2C 读操作

#define CMD_SEND_DATA 0x44 //EasyI2C 模式的读写命令字

格式:

命令字	设备地址+R/W	ROM 地址	长度(该命令帧的最后一	
			个字节)	
44	7 位设备地址+读写位为 1	一般有 1-2 个字节	希望读的个数减1	

举例: (slaveaddress+R =0xA1)

44 A1 FF	直接启动读,正常会返回值 256 个数据 可读出 256 个(0xFF+1)字节。				
44 A1 00 FF	随机读(random read)				
	I2C 接口会先写地址 00, 然后从该地址读, 要求读数据个数 256。				
正常会返回值 256 个所读到的数据。					
44 A1 00 00 07	随机读(random read)				
	I2C 接口先写地址 00 00, 然后从该地址读, 要求读数据个数 8,				
	正常会返回值8个所读到的数据。				
	返回值 0xBB 错误				

5.2.9 产生 I2C 启动时序(Timing I2C 模式)

 #define CMD_SET_STA
 0x60
 //TimingI2C 模式,产生 I2C 启动时序

 格式:命令字 60
 举例:

 60
 执行命令后,会在当前 I2C 通道上产生 I2C 启动时序波形

 返回值:AA

5.2.10 产生 I2C 字节写时序(Timing I2C 模式)

#define CMD_WRITE_BYTE 0x61 //TimingI2C 模式,产生 I2C 写一个字节的时序
 格式:命令字 61 + 待写字节(8 个 bit)
 返回值:该字节写入后,获得的 ACK 状态。1 表示得到了 ACK,0表示得到 NACK。

举例:

61 A0 执行命令后,会在当前 I2C 通道产生 I2C 时序将内容 A0 串行移出。

返回值:1 表示得到了 ACK。说明上位机可继续发写命令

5.2.11 产生 I2C 字节读时序(Timing I2C 模式)

#define CMD_READ_BYTE 0x62 //TimingI2C 模式,产生 I2C 读写一个字节的时序 格式:命令字 62 +(读字节后的需要给出的 ACK 命令)

1表示读字节完成后给 ACK,0表示读字节完成后给 NACK。

返回值:读出的一个字节数据。

举例:

6201 读完一个字节后,给ACK允许继续传输。

返回值:1 表示得到了 ACK。上位机可继续发写命令

5.2.12 产生 I2C 停止时序(Timing I2C 模式)

#define CMD_SET_STO 0x63 //TimingI2C 模式,产生 I2C 停止时序
格式:命令字 63
举例:
63 执行命令后,会在当前 I2C 通道上产生 I2C 停止时序
返回值: AA

5.3 常见问题现象

如果从串口发送指令后,无任何返回结果,请检查以下问题:

- 1) +5V 电源是否接入正确?
- COMSET0,1 的设置,以及上位机的串口波特率是否设置正确? 如果这两个脚都悬空,则默认串口波特率为 115200。
- 3) 串口 TXD, RXD 信号连接是否正确, 有无接反?

如果返回结果或返回值有问题,则检查以下问题:

- 1) SCL, SDA 信号和从设备的连接是否正确和接触可靠?
- 2) 操作指令是否正确?从设备的物理地址是否输入正确?
- 3) 设备地址+(R/W)时,读写是否区分正确? 举例:7位从设备地址1010000 读操作,地址+R/W字节设置成0xA1 写操作,地址+R/W字节设置成0xA0

六、利用 VCI_GYI2C 库函数二次开发

用户除了本文第五节所描述的直接用串口命令方式外,还可以用 VC,VB,Delphi 等工具调用我们 提供的库文件进行二次软件开发。这种直接调用接口转换函数的方式会更加方便用户的软件开发。 库文件: VCI_GYI2C.DLL,VCI_GYI2C.LIB,SiUSBXp.DLL,VCI_GYI2C.H

函数详解见另外的专门文档 GYI2C_Develop_Manual。

七、应用系统示意图

主控制器可以是电脑或者带 UART 串口的单片机/嵌入式系统板卡。

I2C从设备一般是带 I2C或 SMBUS 接口的芯片或设备。

GY7505 是 UART 转 I2C 接口模块, 该模块在经过 RS232 电平转换后与 GY7506 功能完全一样。 GY7506 是 RS232 转 I2C 接口模块。

GY7505/GY7506 因封装较小,可以作为一颗芯片焊接或安装到用户的 PCB 板上。

GY760X 是 RS232 转 1-8 路 I2C 接口板。

系统的连接请参考下图:

图 7.1 GY7506/GY7601 I2C 应用示意图

图 7.2 GY760X RS232 转 1~8 路 I2C 应用示意图

八、附录: AT24CXX 芯片参数

下面给出了 24CXX 系列 I2C 器件的主要参数,其他 I2C 接口器件请参考其手册。

芯片型号	Device Adress	读写 ROM 地址宽度	最大页写能力	
24c01~02	1010 A2 A1 A0 R/W	单字节地址	8 字节	
24c04	1010 A2 A1 P0 R/W	单字节地址	16 字节	
24c08	1010 A2 P1 P0 R/W	单字节地址	16 字节	
24c16	1010 P2 P1 P0 R/W	单字节地址	16 字节	
24c32~64	1010 A2 A1 A0 R/W	2字节地址	32 字节	
24c128~256	1010 A0 A1 A0 R/W	2字节地址	64 字节	
24c512	1010 A2 A1 A0 R/W	2字节地址	128 字节	
24c1024	1010 A 0 A1 P0 R/W	2字节地址	256 字节	

备注: A0-A2 是芯片引脚设置的地址, P0-P2 是内部页地址。每个设备地址只能标识 256 字节的数据空间。